

Funcionamiento del computador

● Resumen cátedra pasada
– Algoritmos
– Diagramas y pseudocódigos
– Algoritmos para números binarios

● Contenidos de esta cátedra
– Introducción a Python
– Variables y valores
– Entrada y salida
– Introducción a expresiones

¿Qué es un algoritmo?

● Un conjunto de reglas predefinidas que, dado una entrada o
insumos específicos, obtiene una salida o resultado
esperado/específico

● Conjunto de pasos que toman un input y resultan en un output
● RAE: Conjunto ordenado y finito de operaciones que permite hallar

la solución de un problema
● Procedimiento

Diagramas de flujo

● Muy prácticos para explicar
procesos

● Diversas notaciones
– Formas de representar (escribir,

dibujar) las ideas
● ¿Qué hace el diagrama de la

izquierda?
● Podemos usar diagramas de flujo

para guiar nuestra programación

Pseudocódigo

● A veces conviene escribir los
algoritmos como diagramas de
flujo y/o como pseudocódigo

● El pseudocódigo es como si
programáramos, pero el lenguaje
usado es informal

● Sirve para comunicar la idea tras
el algoritmo

● Se puede traducir a código; en
nuestro caso, esto sería Python 3

Conversión de decimal a binario

El diagrama de flujo describe el
proceso para obtener la
representación binaria (base 2) de
un número decimal (base 10).

Dividimos por 2 repetidamente
(división entera). Si nuestro
número es impar, colocamos 1 en
la respuesta. De lo contrario,
colocamos 0. Repetimos hasta
llegar a cero.

Respuesta
1101100

● 1 se divide por 2 (división
entera), lo que resulta en 0.

● Como se ha llegado al cero, el
algoritmo se detiene.

● El resultado es 110100.

Convirtiendo a binario

Conversión de binario a decimal

● El resultado es 108, tal como el número inicial del caso anterior
(convertir decimal a binario)

● Se verifica la integridad del algoritmo

Suma de números binarios

● El número binario 11010 es 26
en decimal

● El número binario 10111 es 23
en decimal

● Su resultado, 110001, es 49 en
decimal

● Efectivamente 26 + 23 = 49

Introducción a Python

Preámbulo

● Código fuente: cuando programamos, escribimos los programas
en archivos de texto plano, los que serán interpretados o
compilados luego

● Para medir el tamaño de los programas, se suele considerar el
número de carácteres, el número de instrucciones o el número de
líneas

● Compilador: programa que toma el código fuente y genera un
programa ejecutable

● Intérprete: programa que inmediatamente ejecuta el código
fuente; a veces permite ejecutar línea por línea

Niveles de lenguaje

● Se dice que los lenguajes tienen niveles de acuerdo a su cercanía
a la máquina -- ¡es un espectro continuo!

● Bajo nivel: los lenguajes de bajo nivel son aquellos cercanos a la
máquina; muchas instrucciones hacen poco
– Lenguaje de ensamblador: es el nivel más bajo, depende de la CPU
– Lenguaje C: muy bajo nivel, se solicita y libera memoria como parte

de las instrucciones
● Alto nivel: los lenguajes de alto nivel son aquellos distantes a la

máquina; pocas instrucciones hacen mucho
– Python: muy alto nivel, permite ignorar
– BASIC, Pascal, Scala, etc

Paradigmas de programación

● Imperativo: se ejecuta línea a línea, se permite saltar entre líneas
● Estructurado: es el paradigma que veremos en este curso; tiene

bien ordenado el flujo del programa (saltos condicionales,
repeticiones, subrutinas)

● Orientado a objetos: los valores son objetos, que se pueden
programar para realizar acciones específicas

● Funcional: está basado en llamadas a funciones (subrutinas); aquí
la recursividad pasa a ser esencial

● También hay paradigmas especializados para tareas específicas
(ej. bases de datos, música, ecuaciones, lógica)

Python

● Alto nivel
● Interpretado

– También puede ser compilado
● Multi-paradigma:

– Estructurado (este curso)
– Orientado a objetos
– Funcional

● Muy popular
● Muchas formas de programarlo

Usando
online-python.com

Algunos ejemplos con
Online Python

Los nombres de variable
pueden ser escritos de
manera muy flexible.

El objetivo es recordar
después dónde hemos
memorizado algún dato
relevante para el
programa.

Nota: al escribir
variable = algo
la estamos definiendo y
le asignamos un valor

Ejemplos sencillos

http://www.online-python.com/

Observación

Si dos variables tienen
nombres parecidos (ej.
variable y Variable),
para Python son variables
completamente distintas.

Python no se confunde.

Y si apelamos a una
variable con un nombre
que no existe aún (no
la hemos definido),
entonces Python lanzará
un mensaje de error.

Operadores de asignación
OPERADOR DESCRIPCIÓN

= a = 5. El valor 5 es asignado a la variable a

+= a += 5 es equivalente a a = a + 5

-= a -= 5 es equivalente a a = a - 5

*= a *= 3 es equivalente a a = a * 3

/= a /= 3 es equivalente a a = a / 3

%= a %= 3 es equivalente a a = a % 3

**= a **= 3 es equivalente a a = a ** 3

Ejemplo de asignación

El código a la derecha
demuestra varios tipos de
asignación:
= (simple)
+= (suma un valor)
/= (divide por un valor)

El código de la derecha
equivale a escribir

x = 100
print(x)
x = x + 50
print(x)
x = x / 50
print(x)

Operadores aritméticos

OPERADOR DESCRIPCIÓN USO
+ Realiza Adición entre los operandos 12 + 3 = 15

- Realiza Substracción entre los operandos 12 - 3 = 9

* Realiza Multiplicación entre los operandos 12 * 3 = 36

/ Realiza División entre los operandos 12 / 3 = 4

% Realiza un módulo entre los operandos 16 % 3 = 1

** Realiza la potencia de los operandos 12 ** 3 = 1728

// Realiza la división con resultado de
número entero

18 // 5 = 3

Ejemplo de
operaciones

Las fórmulas del código
que se ve a la derecha
terminan resultando en
valores diferentes (ver
recuadro de abajo).

¿Por qué ocurre esto?
Por las prioridades de las
operaciones y por los
paréntesis.

Mayor prioridad: **
Alta prioridad: *, /
Media prioridad: +, -
Más baja prioridad: =

Operadores relacionales o de
comparación

OPERADOR DESCRIPCIÓN USO
> Devuelve True si el operador de la izquierda es

mayor que el operador de la derecha
12 > 3 devuelve True

< True si el operador de la derecha es mayor que
el operador de la izquierda

12 < 3 devuelve False

== True si ambos operandos son iguales 12 == 3 devuelve
False

>= True si el operador de la izquierda es mayor o
igual que el operador de la derecha

12 >= 3 devuelve True

<= True si el operador de la derecha es mayor o
igual que el operador de la izquierda

12 <= 3 devuelve
False

!= True si ambos operandos no son iguales

Los operadores de
comparación (<, <=, >,
>=, == y !=) entregan
valores de verdad, los
cuales son True y False.

True significa verdadero.
False significa falso.

En clases vimos, además,
cómo combinar los
valores de verdad
(booleanos). Hablamos
de and, or y not.

El ejemplo de la lámina
muestra qué hacen.

Cierre

Preguntas

● ¿Qué es una variable? ¿Para qué sirve?
● ¿Qué es un valor?
● ¿Qué es una expresión?
● ¿Qué imprimen los siguientes print?

print(1000 * 5 / 10)
print('hola', "mundo")
print(input())

